기후위기시계
실시간 뉴스
  • 온실가스로 바이오연료 만든다…미생물 전기합성 기술 개발
- 에너지기술硏 이진석 박사팀, 이산화탄소를 바이오연료·화학물질로 전환
미생물 전기합성 시스템 모식도(왼쪽) 및 반응 모습(오른쪽).[한국에너지기술연구원 제공]

[헤럴드경제=구본혁 기자] 정부는 오는 2030년까지 온실가스 배출량을 5억 3600만t으로 감축하는 내용의 제2차 ‘기후변화대응 기본계획’을 수립했다. 이런 가운데 기후변화 문제를 일으키는 주범인 이산화탄소 감축을 위한 대안으로서 탄소를 자원화하는 기술이 주목받고 있다.

한국에너지기술연구원 광주바이오에너지연구개발센터 이진석 박사 연구진은 전해전지 시스템과 미생물 대사과정을 결합, 바이오연료 및 고부가 화학물질을 생산 할 수 있는 ‘e-바이오리파이너리 기술’을 개발했다고 27일 밝혔다.

산이 많고 영토가 좁은 지형적 특성을 가진 우리나라는 바이오매스 확보에 불리하다. 또한 기존 생물학적 이산화탄소 전환은 광합성을 통해 생산된 유기물 또는 바이오매스를 당화과정 후 미생물 발효를 거쳐 바이오연료 또는 화학물질을 생산하는 방식으로 복잡한 생물 공정을 거쳐야 한다.

최근 이산화탄소를 직접 탄소원(먹이)으로 활용해 성장할 수 있는 미생물에 환원력을 제공해주는 미생물 전기합성 바이오 융합기술이 제시되고 있다. 미생물 전기합성 반응은 기존 미생물 배양공정에서 활용되던 유기산, 당 등의 전자 공급자 역할을 전극으로 대체할 수 있으며, 대사공학을 적용할 경우 이산화탄소를 환원시켜 유용한 바이오화학소재를 생산할 수 있어 많은 주목을 받고 있다. 하지만 현재 미생물 전기합성 기술은 전자를 내부로 받아들이는 효율이 낮고 이산화탄소 전환 속도가 낮다는 문제점이 있다.

연구진은 전자와 이산화탄소를 제공한 조건에서 미생물 성장을 높이기 위해 환원전극을 개선하여 전자전달 성능을 향상시키고 미생물 개량, 고성능 이산화탄소 전환효소 및 가스 생물반응기 원리를 생물전기합성 시스템에 도입했다. 연구에 사용하고 있는 미생물인 자색비황세균은 주변 환경에 따라 다양한 대사모드를 선택할 수 있으며 탄소고정은 물론 질소 고정도 가능한 균주이다. 또한 이산화탄소로부터 전환된 생산물을 다양화해 바이오연료, 바이오폴리머 등 고부가 유용물질을 생산할 수 있을 것으로 기대된다.

현재 연구진은 고성능 이산화탄소 전환 효소를 도입해 연속적으로 이산화탄소를 전환할 수 있는 시스템을 개발 중이며 이와 같은 핵심 기술을 조합해 궁극적으로는 신재생 전기 기반의 e-바이오리파이너리 플랫폼 기술 구축을 목표로 하고 있다.

이진석 박사는 “e-바이오리파이너리 기술은 기존 바이오매스 기반 바이오연료·화학소재 생산 생물 공정 기술의 한계를 극복하는 신개념 기술”이라며 “지역 소재 산·학·연 유관기관과의 협업을 통해 성공적으로 수행될 경우 온실가스 저감 관련 연구개발 분야에 큰 파급효과를 불러일으킬 만한 기술”이라고 말했다.

그는 또 “향후 바이오에너지 및 바이오화학 분야에서 친환경적인 공법이 적용된 잠재기술로 성장이 가능하며, 특히 국내 바이오매스 수급 불균형 문제에 대한 대안기술로 활용이 가능할 것으로 기대한다”고 덧붙였다.

연구진은 향후 미생물 전기합성 기반의 e-바이오리파이너리 공정 효율 향상을 위한 기술과 시스템 구성 기술을 확보해 나갈 예정이다. 이를 통해 CO2를 포함하는 산업체 발생 부생가스 등을 바이오연료 및 화학물질로 전환하는 생물공정 기술을 구현한다는 계획이다.

nbgkoo@heraldcorp.com

맞춤 정보
    당신을 위한 추천 정보
      많이 본 정보
      오늘의 인기정보
        이슈 & 토픽
          비즈 링크